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I. ENCRYPTION ALGORITHMS

Encryption algorithms have been widely used in the Military and Diplomatic communities
to transform information, often called clear text, into unintelligible information called cipher
text. These algorithms are most often mathematical transformations that use a secret key to
encrypt information. The design of modern encryption algorithms are usually developed in one
of two ways (Fig. 1). The first method looks at the design of encryption schemes from the
code breakers point of view, and seeks to use techniques that place a premium on resources that
are in short supply to the code breakers. The Data Encryption Standard (DES) is based on this
premise. Its use of substitution/permutation schemes, sometimes referred to as product ciphers,
tax the computing power, time, memory, and money of aspiring code breakers. The term Work
Factor is often used to assess the strength of encryption algorithms and determine the amount of
resources required to break an algorithm. If the amount of money needed to break a code is
more than the value of the information, then the algorithm is sufficiently strong. Breaking DES
with its 56 bit key would be a formidable challenge (Fig. 2). Using a brute force approach, by
trying every possible key, and testing one million keys per second would take more than 2000
years. Statistically, there would be a 50 percent chance of breaking the code in approximately
1000 years. The other technique is to base the encryption algorithm on solving a problem that is
considered intractable, and has throughout the history of mathematics and computer science
proven difficult, if not impossible to solve.

DESIGN PHILOSOPHY EXAMPLE
BASED ON DES
CODEBREAKER RESOURCES
BASED ON RSA
COMPUTATIONAL COMPLEXITY

Figure 1. Design of Encryption Algorithms

256 — [ 7.2 x 106 KEYS ( 1 min )( 1 HR )(1 DAY)( 1 YR )
1 x 105 KEYS/SEC /\60 SEC/\60 MIN/\24 HRS/\365 DAYS

= 2284.9 YRS.
Figure 2. Brute Force Attack on DES




II. NUMBER THEORY

Number theory which was once considered an esoteric field of mathematics is making
important contributions to the development of modern encryption systems. Number theory is
primarily focused on the juggling and manipulation of whole numbers. Number theory has long
been considered to be the purest form of mathematics, but until recently it has had few practical
applications. The last few decades, with the widespread use of computers, number theory has
grown in prominence and proven to have many practical applications. The generation of random
numbers, prime numbers and complexity theory are all part of number theory domain and have
many applications to the designers of crypto systems. The generation of true random numbers
plays a critical role in the design of secure encryption keys. Prime numbers are very important
because of the difficulty involved in the factoring of large prime numbers provides the security
of many Public Key Encryption (PKE) algorithms. Complexity theory provides the mathemati-
cal foundation for the design and testing of encryption schemes. Number theory has evolved
from an esoteric branch of mathematics to become the focus of intense research by the designers
of encryption algorithms.

III. POLYNOMIAL HIERARCHY

Researchers working in the field of theoretical computer science have developed a hierar-
chy to classify the computational complexity of problems that are difficult to solve. This ranking
is often called the polynomial hierarchy (Fig. 3). The bottom of the hierarchy consists of prob-
lems which are the easiest to solve. The number of computations required to solve these prob-
lems are a polynomial function of the size of the problem. An example of this is n**3. The
number of steps needed to solve this problem grows relatively slowly as n increases. This class
of problems are commonly called P (Polynomial Time) problems because the number of steps
needed to solve these problems are proportional to the amount of computational time needed to
solve these problems. The next step in the polynomial hierarchy are the Nondeterministic Poly-
nomial (NP) Problems. These problems are inherently more difficult, since given a potential
solution to the problem, it can be checked in polynomial time, but no known polynomial time
algorithm exists to solve these problems. These NP Problems are often referred to as exponen-
tial time algorithms since the number of steps needed to solve these problems increases as an
exponential as the n, the size of the problem increases. The top of the hierarchy is composed of
NP-Complete problems which are considered the most difficult of the NP class, and are the basis
of encryption algorithms that capitalize on computational complexity.




NP
COMPLETE

NP
NONDETERMINISTIC
POLYNOMIAL

P - POLYNOMIAL

Figure 3. Polynomial Hierarchy
IV. COMPUTATIONAL COMPLEXITY

Encryption algorithms based on NP-Complete problems are making important contribu-
tions to the development of complexity theory. NP-Complete problems are a well known class
of problems and are the focus of much research in theoretical computer science. Theoretical
computer science seeks to determine what types of problems can be solved by computer and
which classes of problems can not be solved using computers. Throughout history, scientists
and mathematicians have struggled with problems which seemed insolvable. Many of these
problems are now being solved with the help of high speed computing. There still are many
problems which can not be solved, and may never be solved no matter how many advances are
made in high speed computing. These problems are often called intractable or NP problems and
are the focus of much research in the field of theoretical computer science and by designers of
encryption systems. The discovery of a polynomial time algorithm which would solve these
NP-Complete problems is considered akin to finding the Holy Grail of computer science. This
would constitute a major breakthrough, and would have a major impact on both theoretical com-
puter science and the development of complexity based encryption algorithms. The complexity
of these NP—Complete problems increases dramatically as the size of the problem increases.

To put it another way, as the problem grows sufficiently large, an NP—Complete running on the
fastest super computer would not be solved before a polynomial time algorithm running on the
slowest personal computer (Figs. 5 and 6). By capitalizing on problems which are inherently
difficult, encryption is providing real world application of computationally complex problems.
Complexity is generally considered the bane of engineers and scientist trying to solve compli-
cated technical problems, but have proven to be an excellent vehicle for the development of
encryption algorithms. Cryptography is playing an important role in complexity theory and
gaining respectability, since it provides a practical application of complexity theory, and the
theory of a polynomial hierarchy. The use of these computationally complex problems as the
foundation of encryption schemes can result in unbreakable encryption codes. Using problems
that are computationally complex as the foundation for encryption schemes is more difficult than




it seems. Special care must be taken when choosing a computationally complex problem as the
basis for an encryption scheme. Complexity in itself is not a panacea, because these problems
are difficult, if not impossible to prove secure. An encryption algorithm can not be judged on
average—case or worst—case complexity, but on the complexity of the easiest solution. This is
because that one instance where the problem can be solved by polynomial time algorithm could
render the encryption algorithm insecure. The knapsack problem was initially thought to be
secure against cryptographic attack, but was later proven insecure. The focus of computationally
complex algorithms are on the lower bounds of the problem (Fig. 6). The security of a complex-
ity based algorithm would require that the lower bound, or easiest solution of the problem could
not be solved in polynomial time.

Number
of
Complexity
Function
n3 .001 sec .008 sec .027 sec .064 sec 125 sec
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Figure 4. Complexity Time Functions
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Figure 5. Polynomial Versus Exponential Time




PROBLEMS UPPER BOUND LOWER BOUND
P PROBLEMS NK
NP PROBLEMS KN
K = CONSTANT

Figure 6. Upper/Lower Bounds of P and NP Problems
V. ASYMMETRICAL (PUBLIC KEY) ENCRYPTION

The formal link between complexity theory and encryption was complete in 1976, when
Whit Diffie and Martin Hellmann proposed in their landmark paper, “New Directions in Cryp-
tography”, to use NP Complete problems as the basis for asymmetrical encryption algorithms.
These asymmetrical encryption algorithms are often referred to as Public Key Cryptography
(PKC), which uses a pair of keys, one public and one private (Fig. 7). Public keys do not need to
be kept secret and may be published in a book for use by other users. This concept relies on the
fact that even though a potential code breaker knows the public key, it is infeasible to deduce the
private key. This is because the two keys are related by an NP-Complete problem and attempt-
ing to determine one key from another is tantamount to solving this computationally complex
problem. These algorithms contain a trapdoor one way function which makes the problem easy
to solve oneway, but computationally infeasible to reverse. For example, in the problem below,
it is easy to compute Y given X, but much more computationally intensive to compute X given
Y.

Y = X5+ 7X4 + 25X3 + 78X2 + 413

PKC allows not only the transfer of secret information but can be used to ensure it’s integ-
rity as well. If person B used A’s public key to encrypt a message, then only person A can
decrypt the message (security). If person A encrypts a message with his private key then anyone
with access to A’s public key can decrypt the message and be sure that it was A that sent the
message (authentication). The most widely used PKC algorithm is the Rivest, Shamir, Adleman
(RSA) algorithm. The RSA algorithm’s security lies in the complexity of factoring very large
prime numbers, a problem well known by number theorists, and long considered intractable.
The message is first converted into a numeric representation, which is a very large number. Itis
then raised to a high power and then reduced to a modulo of another number. The modulus is
the product of the two large prime numbers, and the Holy Grail for any potential code breaker,
since in order to crack the code, the adversary needs to find the two large prime numbers that
made up the modulus. The security of the code essentially rests with the generation of a large
modulus from two large primes, since the amount of computer time needed to solve the problem
would render it intractable and unable to be solved in polynomial time.

PUBLICKEY | COMMUNICATIONS CHANNEL | PRIVATE KEY
PLAINTENT—3» ) COnTrHing CIPHERTEXT D A Tt —-PLAINTEXT
(PRIVATEKEY) | COMMUNICATIONS CHANNEL | (PUBLIC KEY:

Figure 7. Asymmetrical Encryption




VI. CONCLUSIONS

This paper attempted to explore the development of encryption algorithms based on com-
putational complexity. The use of complexity based encryption has to date shown great promise
as seen by the development of PKC. Encryption algorithms based on complexity theory are rela-
tively new and a nagging question exists in both encryption and theoretical computer science, as
to whether the polynomial hierarchy is real or if all classes are the same and can be solved in
polynomial time. There is a great deal of research ongoing to determine if P = NP, and this has
become a vexing problem in both the encryption and theoretical computer science communities.
Advances in mathematics may eventually solve this debate, but proving this conjecture true
would have major repercussions in the design of modern encryption algorithms.
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